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ON THE STABILITY OF UNIFORM ROTATIONS OF A RIGID BODY 
AROUND THE PRINCIPAL AXIS* 

A. N. CHUDNEWKO 

The stability of uniform rotations of a rigid body with a fixed point around the 
principal axis supporting the center of mass is investigated in the case when the 
moment of inertia relative to the rotation axis equals one of the two other princi- 
pal moments of inertia. The motions studied correspond to the boundary of the 
domain wherein the necessary stability conditions are fulfilled and to the curve on 
which the Arnol'd-Moser determinant vanishes. 

1. On the stability of the steady-state motions of Hamiltonian systems. We 
consider the steady-state motions of an autonomous Hamiltonian system with m + 2 degrees of 
freedom and m ignorable coordinates. In recent years theorems have been proved /1,2/ extend- 
ing to such motions a number of results obtained from a study of the equilibrium position of 
two-dimensional Hamiltonian systems /3,4/. The need for carrying out the corresponding proofs 
is due to the presence of additional difficulties caused by the dependence of the Hamiltonian 
on the cyclic constants. On this basis the Theorem 1 below is given with proof, although an- 
alogous statements (without proof) were made in certain papers, for example, in /5,6/. 

Let the steady-state motion being studied correspond to a point P with coordinates 

pj = 0, qj = 0 (j = 1, 2), pzhl = c,' (n = 1, . . ., m) 
(1.1) 

and let the Hamiltonian H be an analytic function of its own variables at this point. If the 
quadratic part H,a of the Hamiltonian of the reduced system is a sign-definite function of its 
variables, then the Liapunov-stability of steady-state motion (1.1) follows from Routh's theor- 
em with Liapunov's supplement. Suppose that H,o is not a sign-definite function of its varia- 
bles. The following theorem on the equivalence of the stability of steady-state motion (1.1) 
and of the equilibrium position of the reduced system with Hamiltonian Hc holds. 

Theorem 1. Let the eigenvalues of the linearized reduced system be pure imaginary at 
point P : *ia, (co), fia, (co) , and let the frequencies not be connected by a first-order re- 
sonance relation k,a, (co) + &a, (co) # 0, I k, I + I A2 I = 1 (k, and k, are integers). Then from 
the Liapunov-stability of the equilibrium position of the reduced system, proved by reduction 
with the application of Moser's theorem on mappings, follows the Liapunov-stability of steady- 
state motion (1.1). 

Proof. Since the Hamiltonian Hsatisfies the conditions of Lemma 1.1 in /J/, a rest 
point. of the reduced system corresponds to the steady-state motion for each e from some neigh- 
borhood of point co, while the Hamiltonian H, of the reduced system is an analytic function 
of the cyclic constants at point c" and can be presented as the series 

H, =H, t-,H3 + . . . t H, +. . ., H, = ,& h,,~,,vgl”pzY’qlvaqzv~ (v = VI -t vz + va + v,) (1.2) 

whose coefficients k,,,,(c) are analytic functions of c at point C". To prove the theor- 
em we need to investigate the perturbed motions 

pj = epj', qj = Eqj' (j = 1, 2), C, = C," + 6C,' (n = 1,. . ., m), I C’ I < 1 (1.3) 

where 111 is the Euclidean norm of vector x,6 = ek (it is usual to assume k = 1). The 
choice of an appropriate value of k (a sufficiently small neighborhood of point P) enables 
us to surmount the difficulties caused by the dependence of the coefficients of the reduced 
system's Hamiltonian on the cyclic constants. If the question on the stability of the equili- 
brium position of the reduced system with Hamiltonian H,- can be resolved by means of reduc- 
tion (the investigation is led to a system with one degree of freedom, but_ nonautonomous; for 
example, see /3,8/j by forms up to order 2+a, inclusive, in expansion (1.21, then we 
choose k = a -t 1 . Then, representing the functions h+,vmv,(c), analytic at point 9, by 
power series with due regard to the change of variables (1.31, we transform Hamiltonian (1.2) 
to 

H,= H,“(pj’, Q~‘,E) + H,‘(JJ.’ q.’ c ' E) I’ ,, nr (j= 1,2; TZ= 1,. . . ,IU) (1.4) 

Here H,” is the unperturbed part of the Hamiltonian , while the perturbed part H,‘= O(zY+‘) is 
- 
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uniformly bounded with respect to c' for all ]c' (Q 1. We note that the unperturbed part of 
Hamiltonian (1.4) is independent of c‘ and, consequently, H," = H,." . Normalizing the un- 
perturbed part of Hamiltonian (1.4)and using the integral H, = h, we effect at the zero 
isoenergetic level a reduction to a one-dimensional system whose Hamiltonian is 

K = (re)W (cp) + K* (t, r, cp, c,,‘, E) (n = 1, . . ., m) 

where the functions @ and K* = O(eatl) are r-periodic in 'p and K* is k-periodic in t 
and uniformly bounded in c' for all jc’ 16 1. Here r and cp are the momentum and the coordin- 
ate of the one-dimensional system and t is a variable playing the role of time. The sub- 
sequent part of the proof coincides with the corresponding part of the proof of Theorem 2.1 
in /8/. Applying Moser's mapping theorem /3/ to the reduced one-dimensional system, we get 
that the stability of steady-state motion (1.1) follows from the Liapunov-stability of the 
equilibrium position of the reduced system with Hamiltonian H,o . 

Notes. lo, Having proved in some fashion the instability of the rest point of a system 
with Hamiltonian a,., by the same way we prove the instability of the steady-state motion 
(1.1). 

2O. The requirement that Hamiltonian H be analytic at point P can be replaced by the 
condition that partial derivatives of order a+8 in all the arguments exist at this point. 
This follows from /9/ in which the requirement of analyticity of a mapping in Moser's theorem 
is replaced by the condition of existence of continuous fifth-order partial derivatives in 
all arguments, which is fulfilled if function H has continuous partial derivatives of order 
a+3 in all arguments at point P. Thelatteris sufficient also forobtainingtheuniformupper 
estimates figuringintheproofofthetheorem on remainder terms relative to c'. 

The conditions for the stability of the equilibrium position of an autonomous Hamiltonian 
system with two degrees of freedom in the absence of resonances up to order 2n, inclusive 
/lo/, with resonances c+=3a,,a,= 2% /4,11/, a,= c+ and the elementary divisors are simple 
/12/, were obtained precisely by reduction with a subsequent application of Moser's mapping 
theorem to the reduced system. Therefore, according to Theorem 1 they remain valid for the 
steady-state motions of an autonomous Hamiltonian system whose reduced system is two-dimensio- 
nal. In the absence of resonances up to fourth order, inclusive, and in the case of fourth- 
order resonance this result was obtained in /1,2/. In the case of equal frequencies a, = a2 
and nonsimple elementary divisors the stability conditions for the equilibrium position of a 
two-dimensional autonomous Hamiltonian system have been obtained in /13/ without passing to 
the reduced system. But in the given case the result can be obtained by means of reduction 
of the system to a one-dimensional one with a subsequent application of Moser's mapping theor- 
em /14/ and, consequently, carries over to steady-state motions. 

2. Stability of uniform rotations. Statement of the problem. Let us des- 
cribe the motion of a heavy rigid body whose center of mass lies on the principal axis by 
Hamiltonian equations. By directing the axes of the coordinates system connected with the 
body along the principal axes of the energy ellipsoid and introducing the Euler angles in the 
usual manner, we write an expression for the Hamiltonian in the assumption that the center of 
mass lies on the first principal axis 

H= 2A,.4isinz6 (AI Ipe’ sin2 8 + (PIP - pip ~0s VI 4- (4 - A) x 

Here A,, A,, A, are the body's principal moments of inertia for a fixed point; r is the prod- 
uct of the body's weight by the distance to the center of mass; e 7 1 if the center of mass 
lies above the support point and e = -1 otherwise. 

Uniform rotations around the first principal axis with angular velocity 61 are determin- 
ed by the following values of the variables: 

pa = 0, Ye = 0, pq = o-4,. t?=n/2, cp=x/2, 'p =wt+*, (2.1) 

The necessary stability conditions for uniform rotations (2.1) were obtained and analyzed in 
detail in /15/. The sufficient stability conditions were indicated in /16/. In the case of 
equality of the body's principal moments of inertia A, = A, with e = -1 the necessary 
stability conditions coincide with the sufficient. Let us consider the stability of the uni- 
form rotations (2.1) in case A, = A, with e=l. Using the integral pap = coast , we 
pass to a reduced system with two degrees of freedom. Setting 

Pe=x,‘, p’p=x2’, 6=nl2+y,‘, cp=nl2+y,' 

in the perturbed motion, we find the expansion of the reduced system's Hamiltonian in a neigh- 
borhood of its equilibrium position to within terms of sixth order relative to X1', 

I 
%', Yl 9 YI'. 

After passing to a dimensionless time and dimensionless variables 111 52, Yl. Yz by the form- 
ulas 
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z=l~r/A,, Xj' = I/fi,Zj, yj' = yj (j = 1,2) 

the expansion of the reduced system's Hamiltonian is 

(2.2) 

Ha = + ~8 + + 9 + pzzy, + + (JL’ - 1) ~1% - + yaa 

1 
HI=~~-&I,* + 

SP*+ 1 
-+,Y13$ 24 Y1' + +Yr*Yl* + & YZ' 

H,= +Y,' + $&L"zY,~+ 
1X$4- 1 
7.'0 Y,6 - &Y?Y9VYle + Y*') - & YZ6 

b y A, I A,, I*=~JK&TF=p*/JET, 

The triangle inequalities for the moments of inertia delineate in the plane Obp a domain 

c(--<P<+=? 1/z <b <+m) of admissible values of the dimensionless parameters. 

Fig.1 

In the case being analyzed there is only the energy in- 
tegral H = const and the function HZ is sign-constant; 
therefore, it is impossible to find sufficient stability con- 
ditions by constructing a Liapunov function from the integrals 
of the equations of perturbed motion /17/. In /1,2/ it was 
shown that in the subdomain G (3-b+2v2-b< pL2 <b/(b - 1); 
Va < b < (I/s + 1) / 2) of domain C, in which only the neces- 
sary stability conditions are fulfilled, the uniform rotations 
(2.1) are stable everywhere except on a curve S, (Fig-l) at 
whose points the Arnol'd-Moser determinant /3/ vanishes. 
(All the constructions on the Fig.1 have been carried out for 
P> 0 since the graphs for p (0 are symmetric with the 
ones indicated relative to axis Ob ) . Uniform rotations 
corresponding to points of the boundary curveS,(y = jfbl(b -1); 

1 <b <(v/3+ 1)12) of domain G were studied in /18/. It 
was shown that the uniform rotations corresponding to the points of this curve are unstable 
for 4/s( b <(1/s + I)/2 (curve RQ) and are stable for fixed values of angular velocity for 
1 <b ('13 Thus, besides the uniform rotations corresponding to points of curve S, only 

the uniform roations corresponding to point Q(p := 2; b ~~1~) of the boundary curve S, and 
toGpoints of the boundary curve S,(p :: 13 - b + 2(2 - b)LIZj’l:; Vz <b <(fs + I)/ 2) of domain 

remained uninvestigated. The study of the stability of these uniform rotations completes 
the analysis of the stability problem for the uniform rotations (2.1) in the case of equality 
of the body's principal moments of inertia A, r= A,. To answer the question on stability on 
the determinant curve and at the point Q of boundary curve S, we need to normalize the 
Hamiltonian up to terms of order higher than fourth, since terms up to fourth order, in- 
clusive, do not resolve the stability question /1,18/. 

3. Investigation of stability of uniform rotations correspondingtopoints 
of determinant curve 8,. Computing the frequencies of the linearized system (2.2) 

a 1,2 = l'i, (Q1 T D”z)l”L , (Q1 = p2 - b - 1, D = $ + 2p2 (b - 3) $ (b - 1)“) 

we writethecanonic transformation normalizing the quadratic part of the Hamiltonian /l/ 

_- 
y1= - SlPl - szp‘z. ~2 = V alaa (- s243 -t slq2) 

s1 = k I/a, (al” + b), sz = k r/a1 (a%* + b) 

Here pj, qj(j = 1,2) are the new variables, k is an arbitrary constant. The transformation's 
valency c = k%t,a, (ala - azz). This transformation, nonsingular in domain G,takesHamiltonian 
(2.29 into the form (see (1.2) for the representation for H, 

H = 2 (pl* -1. q12) - 4 (pzz + qs2) _I- H, -I_- H, + (3.1) 

Let us write out the nonzero coefficients of the fourth-order form and the nonzero coefficients, 
needed for the investigation, of the sixth-order form (a part of them are presented below; to 
obtain the coefficients kZV,V,V, from the expressions for ho.,,,. we need to interchange the 
positions of a, and a,) 

24ch,,,, = kkzz2 1(8~* + l)(al' + b)’ + 12~’ - 20~” (al” + b)l 

64,oo = k4pa,jfa,a, [(8p2 + l)(a12 + b) + 6 (Ccl' + at2 + 26) - 5 (al" + h)((r12 i- 3a," + 4b)l 
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4&z,, = kia,a, {Pa @Pa + 1) + 2 [(a,2 + b)” + (CC** + b)* + 4p*1 - lop* (al” + a** + 2b)) 

24&o,,= k4a,4a22 (aa2 + b)*, 6ch,,*, = -k*p ~ea~a13a*2(a** + b) 

4choo** = kPp*a,*a*3, 2~h*,,,~ = -k$ f/a,a*a,a** (al* + b) 

4ch*,,* = k4a,a*3 (al* + b)*, 2ch,,*, = k$ daxa,2a* (a** + b) 

4&,,, = -ch,,,l = k”p*a,*a** 

72Ochtm, = Pa*’ (al* + b)[(l36p* - l)(a,$ + b)* + 24Op* - 366~2 (al* + b)] 

720chooso = -kealsa*3 (a** + b)*, 4&h,,*, = - ksp*aIaa*3 (al* + b) 

48ch*,., = -kBp2a,“a** (a** + b), &h**,, = --kdp*a,3a,a (a,* + b) 

ah*,** = -kap*a,3a*4 (al2 + b), 4&h,,,, = k’a,a** {p* (136~’ - l)(a~* + b) + 16 I6p* (a** + b) + 

8p* (a,” -t b) + (al* + b)31 - 122~~ [2p* + (al* + b)V} 

4&h,,,* 7: -kBa,a*4 (al* + b)3, 48ch,,,b = -kaa15a*2 (a,* + b)%, 48ch,,,, = -kep*a,ba*4 (a** -t b). 

At points of curve S, the frequencies a, and a2 of the linearized system are not connected 
by resonance relations up to sixth order, inclusive. At the points of this curve we reduce 
Hamiltonian (3.1), using the Birkhoff transformation, to normal form, restricting ourselves 
to sixth-order terms. Since in the original problem odd-order forms are not present in the 
expansion of the Hamiltonian, fifth-order terms do not appear in the normalization of H,, 
but the coefficients of form H, are changed. Therefore, the normalization is carried out 
in two stages: at first we normalize H, and we compute the changed coefficients of form He, 
and next we normalize He. We obtain 

3 

H+(pl* + y,*)- +I** -' q**) i x Cii (PI* + Ql*)i (P** i- 4**)j + . 
i+,=* 

The coefficients c201 Cll. co2 of the fourth-order form were found in /l/. We write them as 
follows: 

czo = + Chow + 3&m + h*m), cn = f (hm $ hm* + hoazo + kow) 

Introducing the notation f~,I~v,y, = hv,v2vsv. -t krv.v,v, and gv,v,,,., = hv,vfl,v, -hv,v,y,v~ fox the co- 
efficients of the normal sixth-order form, we obtain 

QO = + (5fsooa + fao*o)- &do,, + 4f;o,o + %&o + 

VI 
(fma - h*o*o)*l+ & ($&- - - 

%? 

2 3ai-cla, 
+u'_ 

elf-c, -) a,- a, 

Cal = & (3f41W i- 3hoo* + fa**o) - & Iholoflalo + &?mo(g**o!l + R*wz)l + & (8101 + h2) - 

&(&+g&)+ ~zs(,t+.,,(-3~*+4~3+ 

Z[k,*,o + gol*d* + (~4 + bnd*11 - ,28ca;_ a2J (3~2 -I- 4sS 2 Ikl*xo - gol*d* + (~4 - hm)*lJ 

4 = (fsoo1 - f1od” + km00 - kh20)‘, u* = (3fSlOO + fll*o)* + w3001 + glo*l)' 

4 = (~f,,oo + fll*o)(3flsoo + fl,OJ +- ck3001 + &?,0*1m1003 + &Ol) 

114 = f**oo - f*oo* 

The formulas for v,, v,, vJ, v1 are found from the expressions for Ull U*, U3> u4 by replacing 

f V,VlVI~. by gw,,v. and vie e versa. To obtain the coefficients Co2r COII Cl2 from the expressions 

for c,~. c30. c21 we need to interchange the positions of a, and --a,and the indices in coef- 
ficients hYIVI~,~, : the first and second, the third and fourth. 

To study the stability of the uniform rotations corresponding to points of curve S1. we 
apply Theorem 2.1 proved in /lo/ and extended to steady-state motions by using Theorem 1. The 
determinant curve Sl is defined by the equation 

D* = c*oa*2 + cllaeal + c,*a,* = 0 

The uniform rotations corresponding to points of curve S,,for which 

D, = c*oa*3 + ~*,a*~a, + cl*a*aIa + co3a1” + 0 

are stable. We do not write out the expression for D,(p, b) because it is cumbersome. The 
equation D, = 0 was analyzed on a computer and this showed that the curves defined by this 
equation do not intersect curve S, in domain G (it has been established analytically that 
intersection obtainsonlyat points R and Q of the boundary of domain G). Consequently, 
the uniform rotations corresponding to points of curve S, from domain G are stable. 
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4. Stability of uniform rotations corresponding to second-order resonance. 
On the boundary curve Ss the frequencies cl and cI of the system linearized in a neighbor- 
hood of the motions being studied are connected by a second-order resonance relation: r/. , 
cYq z afO. The linear canonic transformation 

of valency c=.2lp , with a subsequent normalization of the fourth-order form , leads 
Hamiltonian (2.2) to the form 

H = -+ (PI’ + p2) -I- a (qlpz - qzpl) .I- (41’ L 42) I/1 (q12 + 42) + B (QlPZ - 4zPd + c (P12 + P&l f f 

We take advantage of the results in /13,14/, extended by use of Theorem 1 to steady-state 
motions. Since 

A= ~'-2~~+$a-2otL+12 
64~"~~ >o 

at each point of curve S, , we conclude that the uniform rotations corresponding to the points 
of curve Ss are stable. 

5. Stability of uniform rotations corresponding to point Q. First-order 
resonance (one frequency is zero) holds on the boundary curve S,. In this case, the linear 
canonic transformation found in /18/ 

a = {[(p* - I)2 - pZl/ (pZ - l))"Z 

of valency c = -(cl2 - 1) / CL2 takes Hamiltonian (2.2) to the form (see (1.2) for the represent- 
ation for H,) 

H = + p12 - + (~2 + 4%‘) + Ha + HB -I- (5.1) 

We write out the coefficients, needed for the stability investigation, of the fourth- and 
sixth-order forms 

Normalizing by Birknoff's transformation the fourth- and sixth-order forms in expansion (5.1) 
we find 

Making use of Theorem 4.1 of /8/, we conclude that the uniform rotations corresponding to 
point Q of boundary curve S, of domain G are stable for fixed values of the angular veloc- 
ity (of the cyclic constant P*). 

Summing up, we state 

Theorem 2. Suppose that a rigid body having equal moments of inertia relative to the 
first two axes rotates uniformly around the first axis supporting the center of mass, and that 
the center of mass is located above the support point. Such uniform rotations are stable 
everywhere in domain G and on the boundary curve S,, are stable for fixed values of the 
angular velocity on a part (1 <b Q 'i,) of the boundary curve S,, and are unstable on the 
remaining part (4/9 <b <(v/s + 1) / 2) of curve S, 
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